Contact/News Media

Sunday, April 6, 2014

Seeing the tropical forest amid disease

"Insights over the past three decades have clarified how the health and persistence of tropical forest systems depend on critical ecosystem services provided by wildlife," Emory disease ecologist Thomas Gillespie told Liz Kimbrough in a recent intreview for the conservation news site Mongabay. "We've lost pollinators—honeycreeper declines in Hawaii due to introduced malaria; seed dispersers—lowland gorilla declines due to Ebola; and indicator species—frog declines and extinctions due to chytrid fungus."

Gillespie at work in Uganda
Gillespie, an associate professor in Emory's Department of Environmental Sciences and the Rollins School of Public Health, was featured as one of the 12 top innovators in tropical conservation. Below is an excerpt from the interview:

Mongabay: What's the next big thing in forest conservation? What approaches or ideas are emerging or have recently emerged? What will be the catalyst for the next big breakthrough?

Thomas Gillespie: In the past decade, technological advances in non-invasive pathogen surveillance have allowed us to make great strides in understanding how infectious diseases may threaten endangered species (i.e., fecal assays to examine respiratory pathogens and blood-borne pathogens like malaria and immunodeficiency viruses). Similarly, an exciting innovation that's just taking off is letting mosquitos, leeches, and carrion flies do the work for us! All of these invertebrates seek out wildlife for a meal. By trapping them and analyzing their gut contents, we can determine which wildlife species they fed on, and in some cases, the pathogens that infected those individuals. This is especially interesting in regards to carrion flies, since they feed more or less indiscriminately on dead or dying animals. As a result, screening large numbers of carrion flies in a selected tropical forests could provide an inventory of faunal and pathogen diversity including data on the presence or absence of cryptic species. In addition, this method may alert wildlife managers to major mortality events (i.e., based on anomalies in the frequency and amount of DNA from a specific vertebrate species being recovered).

Read the whole interview at mongabay.com.

Related:
In Madagascar, a health crisis of people and their ecosystem
Primate disease ecologist tracks germs in the wild
How germs jump species

No comments:

Post a Comment