Friday, January 18, 2013

For this chemist, science never gets old

"We are pretty close to having a final answer, but we don't have it yet," says John Codington of the quest to develop better ways to detect cancer.

By Mary Loftus

Having peppermint tea and crackers at a small table in the break room of Emory’s Whitehead Biomedical Research Building, John Codington looks out the window onto a crisp November day. The ninety-three-year-old chemist is wearing an orange sweater bright enough to eclipse the fall foliage. He has his own lab space just down the hall, where he comes nearly every day to work in cancer research.

The railroad tracks running by the Depot cafĂ© are just visible through the trees. “That used to be a passenger stop when I went to school here,” he says. Codington’s journey has taken him full circle, from Atlanta, where his family moved when he was one, to college at Emory, to the University of Virginia’s malaria research program, to the National Institutes of Health, to Europe, to faculty positions at Cornell and Harvard, to private biotech companies, and back to Emory.

Cancer cells with antibodies.
His primary research concerns the chemical changes in cell surface glycoproteins associated with immunoresistance in tumor cells, and his goal is to develop a diagnostic assay of sera to detect the presence of a carcinoma (cancer found in epithelial tissues). He hopes to develop a better, more reliable, and consistent way to detect most cancers, preferably at the earliest stages. “The test must be robust and suitable for clinical use,” he says.

Codington’s lab isolated epiglycanin, and recognized that antibodies to epiglycanin signaled a cancer-specific substance in the blood of carcinoma patients. He has worked since to improve the diagnostic assay by making it more stable and consistent—a quest he plans to continue as long as he is able. “We isolated the active component of epiglycanin, which I call Emorin, for Emory,” says Codington, who admits to feeling more himself in a lab coat than street clothes. “We are pretty close to having the final answer but we don’t have it yet.”

Difficulties abound. Cancer, he says, is so close to being normal that many aspects of a cancer cell are present in normal cells. Also, when dealing with human serum, you are dealing with the entire history of each individual. “If they have had measles, or mumps, they have those antibodies. All of these things come to bear,” Codington says, “That’s why it’s taking so long, and why no one else has found it.”

Read more about Codington's work and life. 

Photo of John Codington by Kay Hinton.

No comments:

Post a Comment

Post a Comment