Tuesday, August 7, 2018

The search for secrets of ancient remedies

Cassandra Quave is a world leader in the field of medical ethnobotany — studying how indigenous people used plants in their healing practices to identify promising candidates for modern drugs.

Cassandra Quave (it rhymes with “wave”) is an assistant professor in Emory’s Center for the Study of Human Health and in the School of Medicine’s Department of Dermatology. She is also a member of the Emory Antibiotic Resistance Center.

The Florida native looks at home in the sweltering heat of South Georgia, standing behind a pick-up truck parked on a dirt road that winds through a longleaf pine forest. She tilts a straw cowboy hat back from her face and waves off a flurry of gnats. Her utility belt bristles with shears and a hunting knife. The unfolded gate of the truck bed serves as her desk, as she wrangles a leafy vine of passionflower into a wooden plant press.

 “The Cherokee pounded the roots of passionflower into a poultice to draw out pus from wounds, boils and abscesses,” Quave says. “Everywhere I look in this ecosystem I see plants that have a history of medicinal use by native peoples. The resin of the pine trees all around us, the fronds from the ferns beneath them and the roots of those beautiful yellow flowers over there — black-eyed Susans — were all used to treat wounds and sores.”

Read more here about Quave's field work this summer, and the undergraduates who helped her collect plants of importance to Native Americans.

Monday, August 6, 2018

Neuroscientists team with engineers to explore how the brain controls movement

The labs of Georgia Tech's Muhannad Bakir (far left) and Emory's Samuel Sober (far right) combined forces for the project. The work will be led by post-doctoral fellows in their labs, Georgia Tech's Muneeb Zia (center left) and Emory's Bryce Chung (center right). Photos by Ann Watson, Emory Photo/Video.

By Carol Clark

Scientists have made remarkable advances into recording the electrical activity that the nervous system uses to control complex skills, leading to insights into how the nervous system directs an animal’s behavior.

“We can record the electrical activity of a single neuron, and large groups of neurons, as animals learn and perform skilled behaviors,” says Samuel Sober, an associate professor of biology at Emory University who studies the brain and nervous system. “What’s missing,” he adds, “is the technology to precisely record the electrical signals of the muscles that ultimately control that movement.”

The Sober lab is now developing that technology through a collaboration with the lab of Muhannad Bakir, a professor in Georgia Tech’s School of Electrical and Computer Engineering. The researchers recently received a $200,000 Technological Innovations in Neuroscience Award from the McKnight Foundation to create a device that can record electrical action potentials, or “spikes” within muscles of songbirds and rodents. The technology will be used to help understand the neural control of many different skilled behaviors to potentially gain insights into neurological disorders that affect motor control.

“Our device will be the first that lets you record populations of spikes from all of the muscles involved in controlling a complex behavior,” Sober says. “This technique will offer unprecedented access to the neural signals that control muscles, allowing previously impossible investigations into how the brain controls the body.”

“By combining expertise in the life sciences at Emory with the engineering expertise of Georgia Tech, we are able to enter new scientific territory,” Bakir says. “The ultimate goal is to make discoveries that improve the quality of life of people.”

A prototype of the proposed device has 16 electrodes that can record data from a single muscle. The McKnight Award will allow the researchers to scale up to a device with more than 1,000 electrodes that can record from 10 or more muscles.

The Sober lab previously developed a prototype device — electrodes attached to flexible wires — to measure electrical activity in a breathing muscle used by Bengalese finches to sing. The way birds control their song has a lot in common with human speech, both in how it is learned early in life and how it is produced in adulthood. The neural pathways for birdsong are also well known, and restricted to that one activity, making birds a good model system for studying nervous system function.

“In experiments using our prototype, we discovered that, just like in brain cells, precise spike timing patterns in muscle cells are critical for controlling behavior — in this case breathing,” Sober says. 

The prototype device, however, is basic. Its 16 electrodes can only record activity from a single muscle — not the entire ensemble of muscles involved in birdsong. In order to gain a fuller picture of how neural signals control movement, neuroscientists need a much more sophisticated device.

The McKnight funding allowed Sober to team up with Bakir. Their goal is to create a micro-scale electromyography (EMG) sensor array, containing more than 1,000 electrodes, to record single-cellular data across many muscles.

The engineering challenges are formidable. The arrays need to be flexible enough to fit the shape of small muscles used in fine motor skills, and to change shape as the muscles contract. The entire device must also be tiny enough not to impede the movement of a small animal.

“Our first step is to build a flexible substrate on the micro-scale that can support high-density electrodes,” Bakir says. “And we will need to use microchips that work in parallel with 1,000 electrodes, and then attach them to that substrate.”

To meet that challenge, the Bakir lab will create a 3D integrated circuit. “Essentially, it’s building a miniature skyscraper of electrical circuits stacked vertically atop one another,” Bakir says. This vertical design will allow the researchers to minimize the size of the flexible substrate.

“To our knowledge, no one has done what we are trying to do in this project,” Bakir says. “That makes it more difficult, but also exciting because we are entering new space.”

The Sober lab will use the new device to expand its songbird vocalization studies. And it will explore how the nervous system controls the muscles involved when a mouse performs skilled movements with its forelimbs.

An early version of the technology will also be shared with collaborators of the Sober lab at three different universities. These collaborators will further test the arrays, while also gathering data across more species.

“We know so little about how the brain organizes skilled behaviors,” Sober says. “Once we perfect this technology, we will make it available to researchers in this field around the world, to advance knowledge as rapidly as possible.”

The mission of the McKnight Foundation’s Technological Innovations in Neuroscience Award, as described on its website, is “to bring science closer to the day when diseases of the brain and behavior can be accurately diagnosed, prevented and treated.”

Related:
Singing in the brain: Songbirds sing like humans
Dopamine key to vocal learning, songbird study finds

Thursday, July 26, 2018

Templeton World Charity awards $550,000 to global STEM initiative



The Templeton World Charity Foundation awarded $550,000 to Emory mathematician Ken Ono, for a global program to identify and nurture gifted students in the areas of science, technology, engineering and math (STEM). The program, now known as the Spirit of Ramanujan STEM Talent Initiative, began in 2016 with pilot funding of $100,000 from the Templeton Foundation.

“This additional funding will allow us not only to continue the program, but to expand its mission and impact,” says Ono, Asa Griggs Candler Professor Mathematics at Emory and the vice president of the American Mathematical Society.

The pilot Spirit of Ramanujan program, or SOR, focused on finding exceptional young mathematicians, and awarded grants to 16 grade-school students from across the United States as well as from China, Egypt, India, Kenya and Qatar. SOR matched the mathematicians with mentors and the grants funded summer research and enrichment activities.

SOR will now also offer similar opportunities for individuals showing exceptional promise for STEM fields in which mathematics plays a prominent role, such as computational chemistry, computer science, electrical and computer engineering, mathematical biology, mathematical physics and statistics. Up to 30 eligible people each year will be awarded Templeton-Ramanujan Fellows Prizes (financial grants up to $5,000 per award to cover summer enrichment/research programs) or Templeton-Ramanujan Scholarly Development Prizes (educational materials such as STEM books). 

"The Spirit of Ramanujan initiative aims to break the mold and find brilliant outliers who may not be thriving in the system, so we can match them up with the resources they need," says Emory mathematician Ken Ono, one of the founders of the initiative.

“We are looking for brilliant, creative people who have ideas and abilities that will drive the future of science,” Ono says. “Young people with great promise are often outliers, so far ahead of their classes that teachers don’t know what to do with them. Genius cannot be taught, it can only be nurtured.” 

Ono founded the SOR program along with the Templeton World Charity Foundation; Expii.com, an open-source, personalized learning platform; and IFC Films and Pressman Film — producers of the 2015 biographical film, “The Man Who Knew Infinity.”

The SOR initiative was inspired by the subject of the film, Indian mathematician Srinivasa Ramanujan. A poor Hindu college dropout who was self-taught in mathematics, Ramanujan sent a letter containing some of his theories to British mathematician G.H. Hardy in 1913. Hardy was so impressed that he invited Ramanujan to Cambridge to study and collaborate. His mentorship burnished Ramanujan’s insights and brought them to a world stage. Ramanujan's work played a central role in the development of modern number theory and algebraic geometry, changing math and science forever.

Although the expanded SOR initiative is open to all ages, preference will be given to those under 32 — the age Ramanujan was when he died.

The SOR initiative invites people worldwide to solve creative mathematical puzzles via Expii.com’s Solve feature, to identify exceptional talent. The Art of Problem Solving, a web site that trains students in mathematical concepts and problem-solving techniques, is also advertising the initiative to its worldwide online community.

For more details about how to apply for an SOR grant, and the criteria for an award, visit the program’s web site: https://v1.expii.com/ramanujan

“The program is not intended to just benefit those who receive the awards,” Ono says. “We also hope they become important mathematicians and scientists who make the world a better place.”

Ono heads the SOR program, with an advisory board of other mathematicians, including Manjul Bhargava (Princetone), Olga Holtz (Berkeley), Po-Shen Loh (Carnegie Mellon) and Sujatha Ramdorai (University of British Columbia).

Sir John Templeton established the Templeton World Charity Foundation in 1996 to serve as “a global philanthropic catalyst for discoveries relating to big questions of life and the universe, in areas of science, theology, philosophy and human society.”

Related:
Templeton World Charity to fund 'Spirit of Ramanujan' fellows
Celebrating math, miracles and a movie
Mathematicians find 'magic key' to drive Ramanujan's taxi-cab number

Wednesday, July 11, 2018

Evidence reveals our fractured African roots

A range of ancient cultural artifacts found in different regions of Africa. Clear regionally distinctive material cultural styles, typically involving complex stone tools, first emerged within the Middle Stone Age.

Anthropologists are challenging the long-held view that humans evolved from a single ancestral population in one region of Africa. Instead, a scientific consortium has found that human ancestors were diverse in form and culture and scattered across the continent. These populations were subdivided by different habitats and shifting environmental boundaries, such as forests and deserts.

The journal Trends in Ecology and Evolution published the findings, which drew from studies of bones (anthropology), stones (archaeology) and genes (population genomics), along with new and more detailed reconstructions of Africa’s climates and habitats over the last 300,000 years.

Emory University anthropologist Jessica Thompson was one of 23 authors on the paper. The research was led by the Max Planck Institute for the Science of Human History in Germany and the University of Oxford in England. In the following Q&A, Thompson explains the paper and its significance.

Can you provide some background on our understanding of human evolution? 

Jessica Thompson: Even as early as 20 years ago, fossils were the main material we had to try to answer the question of where humans originated. A multi-regionalist theory hypothesized that Homo sapiens emerged in different places at the same time, evolving at the same rate across the Old World. This would mean that there was extensive gene exchange across ancient Asia, Europe and Africa, and that groups such as Neanderthals would not be a separate species but just a localized form of Homo sapiens. But it is difficult to get that level of resolution from bones alone.


By the 1990s, mitochondrial DNA analyses provided growing genetic evidence for the competing theory — that all modern humans originated in Africa and then dispersed from there around the globe. The implication of this is that groups such as the Neanderthals would actually have been different species, and that they were replaced by modern human groups dispersing from Africa.

Intense debate continued over the two theories but, by the early 2000s, it was clear that the out-of-Africa group had won. Only a small percentage of modern humans from the total population living in Africa actually left the continent, creating a genetic bottleneck in populations outside of Africa. So there is more diversity within the genomes of some living peoples in Africa today than there is, say, between an Australian aboriginal person and a Norwegian person.

As a final twist, whole-genome DNA now shows that there was some gene flow with Neanderthals as those first modern populations emerged from Africa. This could have happened several times over many thousands of years, and so a “leaky out-of-Africa” model seems to be the best fit for the data.

Jessica Thompson in the field in Malawi, where her archaeological sites are at a crossroads between southern and eastern Africa. "There, we find a long, but relatively unexplored cultural record of human behavior that goes back into the last Ice Age," she says.

How does the current paper fit into this model?

JT: While it was well established that modern humans originated in Africa, there was still the question of where in Africa. East Africa and South Africa have been strong candidates, but that could be due to the long historical bias of where fossils were being found.

Our paper takes the global idea of multi-regionalism and shrinks it down to the boundaries of Africa. The answer to where humans originated appears to be lots of places within the continent, often separated for long periods, but again with leaky boundaries. Essentially, there is not a single ancestral human population. Who we are today probably evolved as a mosaic of populations of very near modern humans who were separated by geographic and cultural boundaries but were also all interacting with one another at different points in time. Our origin story is one of lots and lots of different humans that came together and then separated and later came together again in this really confusing manner. There’s a lot of moving parts. Humans, for a very long time, have been a culturally and phenotypically diverse bunch.

What new questions does this paradigm shift bring up?

JT: Instead of seeking the origin of humans in one spot, we need to look for pieces of the puzzle in many different places. Then we can ask, what adaptations did different populations have that contributed to who we are today? How did they come to be present in the single species we are now? And, perhaps more philosophically, what are the unifying characteristics that bind us together as that species, in spite of our differences?

While we need more data from places like East Africa and South Africa, it’s apparent now that West Africa and Central Africa are also key players in the story. They’re at the crossroads for much of the continent and yet we know very little about ancient populations from those regions. I’m hoping I can contribute to that effort with my current work in Malawi, which is positioned between southern and eastern Africa. There, we find a long, but relatively unexplored cultural record of human behavior that goes back into the last Ice Age.

We also recently recovered some of the oldest DNA in Africa from a site in Malawi, which we published last year. This helped to actually show some of those ancient interactions between populations at least over the last 10,000 years or so — as well as some of the differences between them. The implications are that this kind of structure went back even farther in time, to our origins as a species.

Related:
Malawi yields oldest-known DNA from Africa
Bonding over bones, stones and beads
Have skull drill, will travel

Monday, July 9, 2018

Science on stage: Atlanta playwrights explore the human microbiome

Learning about the microbiome "is shifting my perspective of what it means to be human and an individual," says playwright Margaret Baldwin. "What bacteria are driving our dreams?"

Four Atlanta playwrights + 48 hours = four new plays at the forefront of art and science.

That’s the premise of Theater Emory’s “ 4:48,” a frenetic yet focused showcase of new works inspired by the human microbiome that will be performed July 14 at the Schwartz Center for Performing Arts.

The annual speed-writing challenge always yields compelling results, as talented local playwrights come together at Emory to quickly produce plays based on common source material. But this year, for the first time, the Playwriting Center of Theater Emory is teaming up with the Emory Center for the Study of Human Health for “4:48” — an innovative, interdisciplinary collaboration that promises to push the boundaries of both fields.

“Theater offers an exciting communication mechanism to convey cutting edge-research findings to a wide audience, while simultaneously encouraging curiosity and imagination,” says Amanda Freeman, instructor in the Center for the Study of Human Health.

The collaborators hope that this project will introduce the human microbiome — the trillions of microorganisms that live in us and on us — to a whole new audience, providing a spotlight for research that is being done right here on campus.

“I have found very few venues where new science and new art can emerge from a single exercise, so ‘4:48’ is special,” says David Lynn, Asa Griggs Candler Professor of Chemistry and Biology, one of several Emory science faculty offering support as resources for the writers.

Readings of the work developed during "4:48" begin at 4 pm on Saturday, July 14, in the Theater Lab of Schwartz Center. All readings are free and open to the public. For the schedule of readings and play titles, visit the Theater Emory website.

Click here to learn more.

Related:
Learning to love our bugs: Meet the microorganisms that help keep us healthy
Environment, the microbiome and preterm birth

Tuesday, July 3, 2018

A grave tale: The case of the corpse-eating flies


Dozens of ceramic vessels from West Mexico, part of the collection of Emory's Michael C. Carlos Museum, were believed to be "grave goods," traditionally placed near bodies in underground burial chambers almost 1,500 years before the Aztecs. The compact figures depict humans and animals engaged in everyday activities, vividly capturing a place and time. Residue and wear patterns suggested that the vessels had once been filled with food and drink, perhaps to accompany the departed along their journey.

But were the figures authentic?

Seeking answers, the museum invited forensic anthropologist Robert Pickering — who uses entomology, among other techniques – to examine the vessels with the help of Emory scholars.

His quest? Locate telltale insect casings likely left by coffin flies, corpse-eating insects that fed on decomposing bodies interred in the ancient underground shaft tombs of Western Mexico.

"Not to be impolite, but where you have dead people, you have bugs," Pickering explains.

Read more about the project here.

Monday, July 2, 2018

New Atlanta NMR Consortium links resources of Emory, Georgia Tech and Georgia State

The Atlanta Nuclear Magnetic Resonance Consortium "lowers the activation energy to take advantage of partners’ expertise," says Emory chemist David Lynn.


NMR – nuclear magnetic resonance – is a powerful tool to investigate matter. It is based on measuring the interaction between the nuclei of atoms in molecules in the presence of an external magnetic field; the higher the field strength, the more sensitive the instrument.

For example, high magnetic fields enable measurement of analytes at low concentrations, such as the compounds in the urine of blue crabs, opening doors to understanding how chemicals invisibly regulate marine life. High-field NMR also allows scientists to “see” the structure and dynamics of complex molecules, such as proteins, nucleic acids, and their complexes.

NMR is used widely in many fields, from biochemistry, biology, chemistry, and physics, to geology, engineering, pharmaceutical sciences, medicine, food science, and many others.
David Lynn

NMR instruments, however, are a major investment. The most advanced units can cost up to up to millions of dollars per piece. Maintenance can cost tens of thousands of dollars a year. The investment in people is also significant. It can take years of training before a user can perform some of the most advanced techniques.

For these and other reasons, Emory University, Georgia Institute of Technology, and Georgia State University have formed the Atlanta NMR Consortium. The aim is to maximize use of institutional NMR equipment by sharing facilities and expertise with consortium partners.

Through the consortium, students, faculty, and staff of a consortium member can use the NMR facilities of their partners. The cost to a consortium member is the same as what the facility charges its own constituents.

“NMR continues to grow and develop because of technological advances,” says David Lynn, a chemistry professor at Emory University. To keep up, institutions need to keep buying new, improved instruments. Such a never-ending commitment is becoming untenable and redundant across Atlanta, Lynn says. Combining forces is the way to go.


Immediately, the consortium offers access to the most sensitive instruments now in Atlanta – the 700- and 800-MHz units at Georgia Tech. Georgia Tech invested more than $5 million to install the two high-field units, as well as special capabilities, in 2016.

Partners can gain access to Georgia State’s large variety of NMR probes. Solid-state capability, which is well established in Emory and advancing at Georgia Tech, will be available to partners.

Needless to say, the consortium offers alternatives when an instrument at a member institution malfunctions.

Beyond maximizing use of facilities, the consortium offers other potential benefits.

Anant Paravastu
“The biggest benefit is community,” says Anant Paravastu. Paravastu is an associate professor in the Georgia Tech School of Chemical and Biomolecular Engineering. He is also a member of the Parker H. Petit Institute for Bioengineering and Bioscience (IBB).

“Each of us specializes the hardware and software for our experiments,” Paravastu says. “As we go in different directions, we will benefit from a cohesive community of people who know how to use NMR for a wide range of problems.”

Paravastu previously worked at the National High Magnetic Field Laboratory, in Florida State University. That national facility sustains a large community of NMR researchers who help each other build expertise, he says. “We Atlanta researchers would benefit from a similar community, and not only for the scientific advantage.”

Both Lynn and Paravastu believe the consortium will help the partners jointly compete for federal grants for instrumentation. “A large user group will make us more competitive,” Lynn says. “The federal government would much rather pay for an instrument that will benefit many scientists rather than just one research group in one university,” Paravastu says.

“The most important goal for us is the sharing of our expertise,” says Markus Germann, a professor of chemistry at Georgia State. A particular expertise there is the study of nucleic acids. More broadly, Georgia State has wide experience in solution NMR. Researchers there have developed NMR applications to study complex structures of biological and clinical importance.

Germann offers some examples:
Structure and dynamics of damaged and unusual DNA
Structure and dynamics of protein—DNA and protein—RNA complexes
Structural integrity of protein mutants
Small ligand-DNA and -RNA binding for gene control
Protein-based contrast agents for magnetic resonance imaging

“For me, there’s a direct benefit in learning from people at Georgia State about soluble-protein structure,” Paravastu says. He studies the structures of peptides; of particular interest are certain water-soluble states of beta-amyloid peptide, in Alzheimer’s disease. These forms, Paravastu says, have special toxicity to neurons.
Markus Germann

Paravastu also studies proteins that self-assemble. “People at Emory have a different approach to studying self-assembling proteins,” he says. “We have a lot of incentive to strengthen our relationships with other groups.”

“Different labs do different things and have different expertise,” Lynn says. “The consortium lowers the activation energy to take advantage of partners’ expertise.”

Even before the consortium, Germann notes, his lab has worked with Georgia Tech’s Francesca Storici on studies of the impact of ribonucleotides on DNA structure and properties. Storici is a professor in the School of Biological Sciences and a member of IBB.

Germann has also worked with Georgia Tech’s Nicholas Hud on the binding of small molecules to duplex DNA. Hud is a professor in the School of Chemistry and Biochemistry and a member of IBB.

“While collaborations between researchers in Atlanta universities is not new,” Paravastu says, “the consortium will help facilitate ongoing and new collaborations."

What will now be tested is whether the students, faculty, and staff of the partners will take advantage of the consortium.

Travel from one institution to another is a barrier, Lynn says. “Are people going to travel, or will they find another way to solve the problem? How do you know that the expertise over there will really help you?” he asks.

“The intellectual barrier is very critical,” Lynn says. “We address that through the web portal.”

The website defines the capabilities, terms of use, training for access, and institutional fees, among others. Eventually, Lynn says, it will be a place to share papers from the consortium partners.

“Like many things in life, the consortium is about breaking barriers,” Paravastu says. It’s about students meeting and working with students and professors outside their home institutions.

Already some partners share a graduate-level NMR course. For the long-term, Paravastu suggests, the partners could work together on training users to harmonize best practices and ease the certification to gain access to facilities.

“We can think of students being trained by the consortium rather than just by Georgia Tech, or Emory, or Georgia State,” Paravastu says. “By teaming up, we can create things that are bigger than the sum of the parts.”

Written by by Maureen Rouhi, Georgia Tech

Related:
How protein misfolding may kickstart chemical evolution
Peptides may hold 'missing link' to life

Tuesday, June 5, 2018

Physicists devise method to reveal how light affects materials

"Our finding may pave the way for improvements in devices such as optical sensors and photovoltaic cells," says Emory physicist Hayk Harutyunyan. (Stock photo)

By Carol Clark

Physicists developed a way to determine the electronic properties of thin gold films after they interact with light. Nature Communications published the new method, which adds to the understanding of the fundamental laws that govern the interaction of electrons and light.

“Surprisingly, up to now there have been very limited ways of determining what exactly happens with materials after we shine light on them,” says Hayk Harutyunyan, an assistant professor of physics at Emory University and lead author of the research. “Our finding may pave the way for improvements in devices such as optical sensors and photovoltaic cells.”

From solar panels to cameras and cell phones — to seeing with our eyes — the interaction of photons of light with atoms and electrons is ubiquitous. “Optical phenomenon is such a fundamental process that we take it for granted, and yet it’s not fully understood how light interacts with materials,” Harutyunyan says.

One obstacle to understanding the details of these interactions is their complexity. When the energy of a light photon is transferred to an electron in a light-absorbing material, the photon is destroyed and the electron is excited from one level to another. But so many photons, atoms and electrons are involved — and the process happens so quickly — that laboratory modeling of the process is computationally challenging.

For the Nature Communications paper, the physicists started with a relatively simple material system — ultra-thin gold layers — and conducted experiments on it.

“We did not use brute computational power,” Harutyunyan says. “We started with experimental data and developed an analytical and theoretical model that allowed us to use pen and paper to decode the data.”

Harutyunyan and Manoj Manjare, a post-doctoral fellow in his lab, designed and conducted the experiments. Stephen Gray, Gary Wiederrecht and Tal Heilpern — from the Argonne National Laboratory — came up with the mathematical tools needed. The Argonne physicists also worked on the theoretical model, along with Alexander Govorov from Ohio University.

For the experiments, the nanolayers of gold were positioned at particular angles. Light was then shined on the gold in two, sequential pulses. “These laser light pulses were very short in time — thousands of billions of times shorter than a second,” Harutyunyan says. “The first pulse was absorbed by the gold. The second pulse of light measured the results of that absorption, showing how the electrons changed from a ground to excited state.”

Typically, gold absorbs light at green frequencies, reflecting all the other colors of the spectrum, which makes the metal appear yellow. In the form of nanolayers, however, gold can absorb light at longer wave lengths, in the infrared part of the spectrum.

“At a certain excitation angle, we were able to induce electronic transitions that were not just a different frequency but a different physical process,” Harutyunyan says. “We were able to track the evolution of that process over time and demonstrate why and how those transitions happen.”

Using the method to better understand the interactions underlying light absorption by a material may lead to ways to tune and manage these interactions.

Photovoltaic solar energy cells, for instance, are currently only capable of absorbing a small percentage of the light that hits them. Optical sensors used in biomedicine and photo catalysts used in chemistry are other examples of devices that could potentially be improved by the new method. 

While the Nature Communications paper offers proof of concept, the researchers plan to continue to refine the method’s use with gold while also experimenting with a range of other materials. 

“Ultimately, we want to demonstrate that this is a broad method that could be applied to many useful materials,” Harutyunyan says.

Related:
$2 million NSF grant funds physicists' quest for optical transistors

Wednesday, May 16, 2018

Chemistry students sing their studies, hoping for a good reaction



By Carol Clark

On the last day of the spring semester, during Bill Wuest’s “Principles of Reactivity” course, loud noises rattle the Atwood Chemistry Center’s Atomic Classroom. It isn’t explosions — it’s pop music mixed with bursts of laughter.

“This bond’s alright!” a group of Emory first-year students belts out on a YouTube video playing on screens before the class. Backed by the music of “Oh, What a Night,” they dance before a periodic table, write on a white board and mix chemicals in a lab while singing lyrics they wrote themselves: “Now I use a base to synthesize. It can readily be hydrolyzed. Mechanisms, what a sight!”

In just under four minutes, the students sing key lessons they learned over the semester about carbonyl mechanisms.

“It’s basically describing how reactions go,” explains Rebecca Henderson, one of the performers. “A reaction is not normally just putting two chemicals together and — BOOM — a product comes out. There’s a lot of different steps involved and we wanted to describe some of them, and why a reaction goes down one pathway and not another.”

Henderson created the video with classmates Carson Brooks, Lauren Cohen, Justine Griego and Alex Kim. They all played themselves in the video — except for Kim, who used powder to create a white patch in his hair and portray the professor.

“I love it when they mock me, they get extra points for that,” says Wuest, who has a natural, white streak of hair running through the center of his close-cropped dark hair.

Wuest, who joined Emory in the fall of 2017 as a Georgia Research Alliance Distinguished Investigator, directs an organic chemistry lab along with teaching undergraduates. He started having students make music parody videos while he was at Temple University.

“A lot of people think that chemistry is dry and boring but there’s a lot of creativity involved in it and that’s often overlooked in classrooms,” Wuest says.

The videos fit in well with Emory’s curriculum. Last fall, Emory became one of the first major research universities to completely overhaul how chemistry is taught, from introductory courses to capstone seminars. The new program, called Chemistry Unbound, moves away from teaching a narrow slice of chemistry every year to jumping into a big-picture understanding of chemistry’s central role across the sciences.



The video assignment helps with those big-picture concepts, Wuest says. Students form groups of up to six to make a two-to-four-minute educational video about some aspect of what they’ve learned in class. The video can either take the form of a musical parody of a well-known song or — for the less adventurous — a more straightforward lesson in the style of the Khan Academy website.

While Wuest is not the first to have chemistry students make videos, he is one of the few to actually measure their effect. With the help of his wife, Liesl Wuest, an educational analyst who also works at Emory, he has compared learning outcomes — in the form of exam performance before and after the videos — and found a strong correlation to improved scores.

His Temple students received extra credit, but not a grade, for making videos. Out of 130 students, 25 percent of them opted to do the videos. The average score for the class on an exam before the video project and an exam following the video project found that those who made videos had an average of 50 percent more improvement in their scores compared to those who opted out.

“Making the videos forces students to think about the material in new ways,” Wuest says. “It also makes the material more memorable to help it stick with them long term.”

Wuest refined the criteria for the video project and turned it into a graded requirement for his Emory classes. The top videos, based on accuracy and execution, will be housed on the Canvas learning management system so that future students can use them for inspiration and study aids.



“I was really impressed with the level of the videos this semester,” Wuest says. “They showcase the quality and the diversity of the students at Emory.”

Wuest plans to continue measuring the effect of the videos on learning. Many of the students, meanwhile, have given the video assignment a big thumb’s up.

“Not only do you learn the material, but it’s a fun experience,” says Dennis Jang, a first-year student.

Jang helped make a video called “I’ll Make a Chemist Out of You,” set to the song “I’ll Make a Man Out of You” from the Disney movie “Mulan.” The other first year students in his group included Muhammad Dhanani, Alex Fukunaga, Gaby Garcia and Jessie Kwong.

“The hardest part of this project was balancing the content and the comedy,” Jang says. “We presented some broad aspects of what we learned in class and some more specific aspects. And then we added humor to keep the audience watching.”

The formula worked. An informal vote following the screening of the videos in class, based on laughter and applause, showed “I’ll Make a Chemist Out of You” was the clear audience favorite.

“As we were watching all of the videos together we were laughing and just really enjoying being together,” Henderson says. “It was the final wrap-up of a great semester. Bill really knows how to make a true community out of a classroom.”

You can watch more of the videos by clicking here. 


Related:
Chemistry synthesizes radical overhaul of undergraduate curriculum

Monday, May 14, 2018

Study reveals how the brain decides to make an effort

"Understanding how the brain works normally when deciding to expend effort provides a way to pinpoint what's going on in disorders where motivation is reduced," says Emory psychologist Michael Treadway, whose lab conducted the study.

By Carol Clark

From deciding to quit hitting the snooze button and get out of bed in the morning to opting to switch off the TV and prepare for sleep at night, the mind weighs the costs versus benefits of each choice we make. A new study reveals the mechanics of how the brain makes such effortful decisions, calculating whether it is worth expending effort in exchange for potential rewards.

The Proceedings of the National Academy of Sciences (PNAS) published the findings by psychologists at Emory University.

“We showed that the brain’s ventromedial prefrontal cortex, which was not previously thought to play a key role in effort-based choices, actually appears to be strongly involved in the formation of expectations underlying those choices,” says Emory psychologist Michael Treadway, senior author of the paper.

Treadway’s lab focuses on understanding the molecular and circuit-level mechanisms of psychiatric symptoms related to mood, anxiety and decision-making.

“Understanding how the brain works normally when deciding to expend effort provides a way to pinpoint what’s going on in disorders where motivation is reduced, such as depression and schizophrenia,” he says.

Previous research had observed three brain regions in decision-making; the dorsal anterior cingulate cortex (dACC), the anterior insula (aI) and the ventromedial prefrontal cortex (vmPFC). Studies had pointed to the vmPFC as central to the computation of subjective value during probability decision-making. But prior evidence also suggested that when it comes to decisions about effort expenditure, those subjective value estimates were not computed by the vmPFC but by the other two brain regions.

A limitation to previous studies on effort-based choices is that they simultaneously presented the costs and benefits of a choice to experimental subjects.

“In the real world, however, we usually have to make decisions based on incomplete information,” says Amanda Arulpragasam, first author of the PNAS paper and a psychology PhD candidate in Treadway’s lab.

Arulpragasam designed a study that allowed the researchers to model distinct neural computations for effort and reward.

Subjects underwent functional magnetic resonance imaging (fMRI) while performing an effort-based decision-making task where the effort costs and rewards of a choice were presented separately over time.

The subjects could choose to make no effort and receive $1, or make some level of physical effort in exchange for monetary rewards of varying magnitude, up to $5.73. The physical effort involved rapid button pressing at varying percentages of each participant’s maximum button pressing rate. Participants were required to press the button using their non-dominant pinkie finger, making the task challenging enough to be unpleasant, although not painful.

In the effort-first trials, participants were shown a vertical bar representing the percentage of their maximum button pressing rate that would be required to do the task. They were then shown the size of the reward for performing the task. The reward-first trials presented the information in the opposite order.

After receiving both sets of information, participants were prompted to choose the no-effort option or the effort option.

The experimental design allowed the researchers to tease apart the effects of recent choices on the formation of value expectations of future decisions.

The results revealed a clear role for the vmPFC in encoding an expected reward before all information had been revealed. The data also suggested that the dACC and aI are involved in encoding the difference between what participants were expecting and what they actually got, rather than effort-cost encoding.

“Some have argued that decisions about effort have a different neural circuitry than decisions about probability and risk,” Treadway says. “We’ve showed that all three brain regions come into play, just in a different way than was previously known.”

Co-authors of the PNAS paper include Jessica Cooper, a post-doctoral fellow in the Treadway lab and Makiah Nuutinen, a research interviewer in the lab.

Related:
Twitter reveals how future-thinking Americans are and how that affects their decisions

Friday, May 11, 2018

Dengue 'hot spots' provide map to chikungunya and Zika outbreaks

A street scene in Merida, Mexico, a city of about one million in the Yucatan Peninsula where the study was based. Merida had a little over 40,000 reported dengue cases during 2008 to 2015 and nearly half of them were clustered in 27 percent of the city.

By Carol Clark

Identifying dengue fever “hot spots” can provide a predictive map for outbreaks of chikungunya and Zika — two other viral diseases that, along with dengue, are spread by the Aedes aegypti mosquito.

PLOS Neglected Tropical Diseases published the findings, the first confirmation of the spatial-temporal overlap for outbreaks of the three diseases, led by Emory University.

“We had hypothesized that we would see some overlap between these diseases, but we were surprised at the strength of that overlap,” says Gonzalo Vazquez-Prokopec, a disease ecologist in Emory’s Department of Environmental Sciences and lead author of the study. “The results open a window for public health officials to do targeted, proactive interventions for emerging Aedes-borne diseases. We’ve provided them with a statistical framework in the form of a map to guide their actions.”

The analysis drew from eight years of data from Merida, Mexico, on symptomatic cases. A city of one million located in the Yucatan Peninsula, Merida had about 40,000 reported dengue cases during 2008 to 2015, and nearly half of them were clustered in 27 percent of the city. The neighborhoods comprising these dengue hot spots contained 75 percent of the first chikungunya cases reported during the outbreak of that disease in 2015 and 100 percent of the first Zika cases reported during the Zika outbreak in 2016.

“Currently, most mosquito control efforts are not done until cases of mosquito-borne diseases are detected,” Vazquez-Prokopec says. “But by the time you detect a virus in an area, it has likely already begun to spread beyond that area.”

Mosquito control efforts generally involve outdoor spraying that covers broad swaths of a city, further reducing efficacy, he adds. Outdoor spraying is particularly ineffective for the Aedes aegypti mosquito. “This mosquito is highly adapted to urban environments,” Vazquez-Prokopec says. “It likes to live inside houses and to feed on people.”

A targeted approach would make it more feasible to implement time-consuming and costly interventions such as indoor residual spraying.

A technician sprays the ceiling and walls of a home in Merida. Indoor residual spraying is effective, but is not practical for large areas of a city, due to the time and expense involved. Photo by Nsa Dada.

“The statistical framework that we have developed allows public health officials to harness the power of big data to do more effective and efficient mosquito control by focusing on high-risk areas — even before an epidemic begins,” Vazquez-Prokopec says.

The study used disease case reports at the household level and then scaled them up to neighborhoods to protect individuals’ privacy in the final map. The hot spots for reported dengue cases were confirmed by data from laboratory blood tests of a cohort of 5,000 people. The analysis showed that people living in a dengue hot spot had twice the rate of infection of those outside of the hot spots.

The research team included scientists from the Autonomous University of Yucatan and health officials from the state and federal level in Mexico. Other members of the team were scientists from seven other universities and health research institutions, including the U.S. Centers for Disease Control and Prevention.

The researchers are now working with the Pan American Health Organization (PAHO) to develop a manual and training materials, based on open-access software, for mapping risks of Aedes-borne diseases to guide proactive interventions throughout urban areas of the developing world.

More than one third of the world’s population lives in areas at high risk for infection with the dengue virus, a leading cause of illness and death in the tropics and subtropics, according to the Centers for Disease Control and Prevention. Dengue fever is sometimes called “break bone fever” due to the excruciating pain that is among its symptoms.

The chikungunya virus emerged in the Americas in 2013, sweeping through many countries where dengue is endemic. Common symptoms of chikungunya infection may include headache, muscle pain, joint swelling and rash.

Zika virus followed in 2016, causing little alarm at first due to its relatively mild symptoms. It soon became apparent, however, that the Zika virus could cause birth defects in the babies of pregnant women who were infected.

“You tend to see transmission go down right after large numbers of a population are infected with these Aedes-borne viruses, leading to herd immunity,” Vazquez-Prokopec says. “But these viruses do not disappear. They keep circulating and can reappear later.”

Meanwhile, new Aedes-borne viruses are likely to emerge, he adds, as rapid urbanization and a warming climate help the mosquito thrive.

Vaccines are not yet available for chikungunya or Zika, and efforts to roll out a vaccine for dengue are complicated by the fact that the virus comes in different serotypes.

“Although effective vaccines would be the ultimate line of defense against these diseases, we cannot give up on mosquito control,” Vazquez-Prokopec says.

Related:
Contact tracing, with indoor spraying, can curb dengue outbreak
Zeroing in on 'super spreaders' and other hidden patterns of epidemics
Human mobility data may help curb epidemics

Monday, May 7, 2018

Bonding over bones, stones and beads


By Carol Clark

"I've really been into bones since I was little. I don't know why," says Emory University senior Alexandra Davis, an anthropology major. "Not fresh bodies, though. No soft tissues or blood. Just bones."

In fact, Davis loves bones so much that she was willing to spend seven weeks in Malawi with Emory anthropologist Jessica Thompson and four more of her students last summer, excavating bones and other artifacts in ancient hunter-gatherer sites, assisted by a team of locals.

Thompson will return to Malawi in July with another team of students to continue excavation of two sites that were started last summer. "We want to get into the deeper layers, because in both cases we did not come close to reaching the bottom of the sites," Thompson says. "Then, we want to find out how old they are."

Read more about the project.

Related:
Malawi yields oldest-known DNA from Africa
Have skull drill, will travel

Friday, May 4, 2018

'Dog-nition' research set for Science Friday



Come. Sit. Stay. And listen to Science Friday's interview at 3:30 pm E.T. today with Emory neuroscientist Gregory Berns, who is exploring the inner workings of the canine mind. Two of the questions the program plans to explore: Do dogs have a concept of time? And how do our furry companions make sense of the world?

You can tweet questions you'd like answered to @scifri. The radio program is based at WNYC Studios, distributed to public radio stations across the United States, and is also accessible online.

Related:
A dog's dilemma: Do canines prefer praise or food?
Recreating the brain of the extinct Tasmanian tiger

Tuesday, May 1, 2018

Emory chemistry receives $7.5 million to lead fuel cell research

"A deeper understanding of electrochemical processes is important in the quest for more efficient, renewable forms of energy," says Emory physical chemist Tim Lian, shown in his lab. Photo by Stephen Nowland, Emory Photo/Video.

By Carol Clark

The U.S. Department of Defense awarded $7.5 million to Tianquan (Tim) Lian, professor of physical chemistry at Emory University, to lead an investigation of electrochemical processes underlying fuel-cell technology. The award comes through the DoD’s highly competitive Multidisciplinary University Research Initiative, or MURI. The program funds teams of investigators from more than one discipline to accelerate the research process.

“A deeper understanding of electrochemical processes is important in the quest for more efficient, renewable forms of energy,” Lian says. His lab develops sum-frequency generation spectroscopy to selectively probe reactions on the surface of an electrode. The technique can provide insights into the fundamental steps involved in energy generation, conversion and storage technologies — ranging from solar cells, to fuel cells and batteries.

Fuel cell electric vehicles use a fuel cell instead of a battery — or in combination with a battery — to generate electricity for power. While they have lower emissions and higher fuel-efficiency than internal-combustion engines, fuel cell vehicles are currently limited to lighter fuels, such as hydrogen.

The Air Force Office of Scientific Research accepted the MURI proposal from Lian, principal investigator of the project, and his colleagues from five other universities, including Yale, Cornell, Massachusetts Institute of Technology, the University of Pennsylvania and the University of Southern California. Together, the researchers encompass the disciplines of advanced spectroscopy, electrochemical mass spectroscopy and electrochemical theory to model, test and interpret reactions.

“Bringing together experimentalists and theorists with different backgrounds gives us the expertise to tackle more challenging problems,” Lian says.

The concept of fuel cells was first demonstrated in 1801, while the invention of the first working fuel cell occurred in 1842, when William Grove showed that an electrochemical reaction between hydrogen and oxygen could produce an electric current. NASA later developed fuel cell applications for the space program.

“Electrochemistry goes way back in science, and has many important applications, but our understanding of it remains largely empirical,” Lian says. “The Air Force wants to make a concerted effort to advance the field by boosting our understanding of electrochemical processes at the molecular and atomic level.”

The research team will develop software for electrochemical platforms as an experimental tool to gather data at the microscopic scale of processes such as the current-voltage curve generated in an electrochemical cell. The team will also develop theoretical tools to interpret the data. They will apply these experimental and theoretical tools to study fuel-cell technologies that use methanol and ethanol directly as fuels. These fuels are more energy dense than hydrogen, giving them the potential to greatly improve the range of fuel-cell vehicles, although their use in fuel-cell technology currently suffers from poorly understood side reactions that occur on electrode surfaces.

The software and theoretical tools that Lian’s team develops will be open source, allowing researchers in other labs to use it to simulate their own electrochemical experiments as well as interpret their data.

Providing these tools to the broader electrochemical industry will support widespread efforts for innovation and discovery, Lian says. “We hope to make a lasting impact in the field, opening doors to do things with electrochemistry that are currently out of reach.”

Over the past 30 years, DoD’s MURI program has brought significant new capabilities to U.S. military forces and opened up new lines of research. Notable examples include foundations in the fabrication of nanoscale and microscale structures by the processes of self-assembled materials and microcontact printing, the integration of vision algorithms with sensors to create low-power, low-latency, compact adaptive vision systems, and advances in fully optical data control and switching.

Related:
Chemists find new way to do light-driven reactions

Monday, April 30, 2018

Physics of a glacial 'slushy' reveal granular forces on a massive scale

The ridge in the right center of the photo shows where icebergs have broken off from Jakobshavn Glacier and tumbled into the water to form a slushy ice mélange — the world's largest granular material. Photo by Ryan Cassotto.

By Carol Clark

The laws for how granular materials flow apply even at the giant, geophysical scale of icebergs piling up in the ocean at the outlet of a glacier, scientists have shown.

The Proceedings of the National Academy of Sciences (PNAS) published the findings, describing the dynamics of the clog of icebergs — known as an ice mélange — in front of Greenland’s Jakobshavn Glacier. The fast-moving glacier is considered a bellwether for the effects of climate change.

“We’ve connected microscopic theories for the mechanics of granular flowing with the world’s largest granular material — a glacial ice mélange,” says Justin Burton, a physicist at Emory University and lead author of the paper. “Our results could help researchers who are trying to understand the future evolution of the Greenland and Antarctica ice sheets. We’ve showed that an ice mélange could potentially have a large and measurable effect on the production of large icebergs by a glacier.”

The National Science Foundation funded the research, which brought together physicists who study the fundamental mechanics of granular materials in laboratories and glaciologists who spend their summers exploring polar ice sheets.

“Glaciologists generally deal with slow, steady deformation of glacial ice, which behaves like thick molasses — a viscous material creeping towards the sea,” says co-author Jason Amundson, a glaciologist at the University of Alaska Southeast, Juneau. “Ice mélange, on the other hand, is fundamentally a granular material — essentially a giant slushy — that is governed by different physics. We wanted to understand the behavior of ice mélange and its effects on glaciers.”



For thousands of years, the massive glaciers of Earth’s polar regions have remained relatively stable, the ice locked into mountainous shapes that ebbed in warmer months but gained back their bulk in winter. In recent decades, however, warmer temperatures have started rapidly thawing these frozen giants. It’s becoming more common for sheets of ice — some one kilometer tall — to shift, crack and tumble into the sea, splitting from their mother glaciers in an explosive process known as calving.

Jakobshavn Glacier is advancing as fast as 50 meters per day until it reaches the ocean edge, a point known as the glacier terminus. About 35 billion tons of icebergs calve off of Jakobshavn Glacier each year, spilling out into Greenland’s Ilulissat fjord, a rocky channel that is about five kilometers wide. The calving process creates a tumbling mix of icebergs which are slowly pushed through the fjord by the motion of the glacier. The ice mélange can extend hundreds of meters deep into the water but on the surface it resembles a lumpy field of snow which inhibits, but cannot stop, the motion of the glacier.

“An ice mélange is kind of like purgatory for icebergs, because they’ve broken off into the water but they haven’t yet made it out to open ocean,” Burton says.

While scientists have long studied how ice forms, breaks and flows within a glacier, no one had quantified the granular flow of an ice mélange. It was an irresistible challenge to Burton. His lab creates experimental models of glacial processes to try to quantify their physical forces. It also uses microscopic particles as a model to understand the fundamental mechanics of granular, amorphous materials, and the boundary between a free-flowing state and a rigid, jammed-up one.

“Granular material is everywhere, from the powders that make up pharmaceuticals to the sand, dirt and rocks that shape our Earth,” Burton says. And yet, he adds, the properties of these amorphous materials are not as well understood as those of liquids or crystals.

In addition to Amundson, Burton’s co-authors on the PNAS paper include glaciologist Ryan Cassotto — formerly with the University of New Hampshire and now with the University of Colorado Boulder — and physicists Chin-Chang Kuo and Michael Dennin, from the University of California, Irvine.

The researchers characterized both the flow and mechanical stress of the Jacobshavn ice mélange using field measurements, satellite data, lab experiments and numerical modeling. The results quantitatively describe the flow of the ice mélange as it jams and unjams during its journey through the fjord.

The paper also showed how the ice mélange can act as a “granular ice shelf” in its jammed state, buttressing even the largest icebergs calved into the ocean.

“We’ve shown that glaciologists modeling the behavior of ice shelves with ice mélanges should factor in the forces of those mélanges,” Burton says. “We’ve provided them with the quantitative tools to do so.”

Related:
The physics of a glacial earthquake
How lifeless particles can become 'life-like' by switching behaviors

Thursday, April 26, 2018

DNA analysis adds twists to ancient story of a Native American group

"I want to help Native American tribes to reclaim knowledge of their very ancient evolutionary histories — histories that have been largely wiped away because of colonialism," says Emory geneticist John Lindo. Photo by Kay Hinton, Emory Photo/Video.

By Carol Clark

The ancient genomes of the Tsimshian indigenous people left tell-tale markers on the trail of their past, revealing that at least 6,000 years ago their population size was on a slow but steady decline.

The American Journal of Human Genetics published the findings, which draw from the first population-level nuclear DNA analysis of a Native American group from ancient to modern times.

“The finding contradicts a popular notion,” says John Lindo, a geneticist in Emory University’s Department of Anthropology and first author on the paper. “There is this idea that after Native Americans came in through the Bering Strait that they were all expanding in population size until Europeans showed up. At least for this one population, we’ve shown that was not the case.”

A boon in next-generation DNA sequencing technology has opened the possibility to explore the evolutionary history of different populations. “Ancient nuclear DNA analysis is a relatively new field,” Lindo says. “Not until recently have we had methods to sequence an entire genome quickly and inexpensively.”

Nuclear DNA provides information on an individual’s lineages going back hundreds of thousands of years. Lindo is one of the few geneticists looking at ancient whole genomes of Native Americans. He is especially interested in understanding how the genomes of their different populations evolved over time.

“Their evolutionary histories are radically different,” Lindo says. “Over thousands of years, various Native American populations have adapted to living in every ecology throughout North and South America, from the Arctic to the Amazon. That’s about as an extreme as you can get for differences in environments.”

The Tsimshian people historically lived in longhouses in coastal British Columbia and southern Alaska where they harvested the abundant sea life. Lindo and his colleagues sequenced the genomes of 25 living Tsimshian people and 25 ancient individuals who lived in the same region between 6,000 and 500 years ago, and confirmed that they were a continuous population through time.

Members of the Tsimshian Native American tribe hold a tea party near Fort Simpson, British Columbia, in 1889. Image from the Library and Archives Canada.

In a previous paper, drawing from the same data set, they found a dramatic shift between the two time periods in a class of genes associated with the immune system, suggesting a strong evolutionary pressure on the population to adapt to pathogens. A demographic model indicated a crash in the Tsimshian population size of about 57 percent during the early-to-mid 19th century. That finding fitted with historical accounts for how smallpox, introduced by European colonization, devastated the Tsimshian population during two epidemics within that time-frame.

The current paper looked at broader genetic variations between the ancient and modern DNA. An analysis showed both how the variation declined slowly in the ancient population before the collapse, but has since recovered.

“After a population collapse, only a subset of the genetic diversity remains,” Lindo says. “We find a more nuanced story, that despite the population collapse, the genetic diversity of modern Tsimshian people varies significantly.”

Intermarriage with other Native American groups and non-native populations increased the genetic diversity of some of the modern-day Tsimshian people so that it is near the levels prior to their population collapse, the analysis showed.

“A population with relatively high genetic diversity has a greater potential to fight off pathogens and avoid recessive traits,” Lindo says. “It exemplifies the benefits of gene flow between populations, especially following catastrophic events such as the small pox epidemics that the Tsimshian endured.”

Senior authors on the paper are Michael DeGiorgio from Pennsylvania State University and Ripan Malhi from the University of Illinois. The paper’s coauthors include Tsimshian representatives Joycelynn Mitchell and Barbara Petzelt from the Metlakatla Treaty Office in Prince Rupert, Canada.

Malhi, a leader in forging trusting relationships between genetic researchers and indigenous people, was a mentor to Lindo, who earned his PhD at the University of Illinois at Champaign-Urbana.

Lindo is continuing that tradition of building trust and working closely with indigenous populations. His ancient DNA research at Emory integrates the approaches of ancient whole genomes, statistical modeling and functional methods.

One of his projects is focused on genetic fluctuations to help understand ancient adaptions in various Native American populations. He is currently working with 10 different tribes from throughout North America.

“Community engagement is essential when working with indigenous communities,” says Lindo, explaining that he first meets personally with a tribal community to talk about how a genetic study might add to their knowledge of their own history.

“I listen to their stories and how they are working to keep their cultures alive,” he says. “One elder from a southwestern tribe told me that his grandfather was taken away in the early 1900s because he was a shaman and Christianity was swelling through the area. Each tribe’s stories are different but they are all powerful, and sometimes difficult, stories to hear.”

Most ancient DNA analyses have come out of Europe, where more ancient DNA labs are based and cold temperatures have helped preserve specimens.

Lindo wants to bring some of the same insights that those of European ancestry are gaining about their past to Native Americans.

“I’d like to disentangle this idea that Native Americans are part of a singular race,” he says. “I want to help Native American tribes to reclaim knowledge of their very ancient evolutionary histories — histories that have been largely wiped away because of colonialism.”

Related:
Malawi yields oldest-known DNA from Africa

Thursday, April 5, 2018

Science Art Wonder: Students team with labs to bring research to life

Art by Emory senior Pamela Romero, Science.Art.Wonder. founder and president, portrays how aphids can develop wings in response to environmental changes. The DNA painted along the edges of the canvases is the same, except that different genes are switched on. Photo by Ann Watson, Emory Photo/Video

By Carol Clark

A small crowd gathers in Emory’s White Hall before the menacing sight: Large rubber worms arrayed on triangular red spikes. The jagged spikes, from a few inches to more than a foot tall, lean crazily in all directions. Some of the worms — suspended on near-invisible fishing line — appear to rise off the spikes, escaping to a circular mirror hanging from above.

“This is how evolution works!” says Ethan Mock, a sophomore majoring in ancient history, who created the sculpture, titled "The Crucible." He looks dapper in a leather vest and tweed cap and speaks with theatrical flair to the crowd. “The spikes represent the trials and tribulations of the worms’ struggles. Most are trapped in the spikes but a few climb out, not realizing that they are simply climbing into a new trial, a new test.”

The onlookers include a mix of college students, children and their parents, brought together by campus events during the recent Atlanta Science Festival. Joining the regular attractions of Physics Live! and Chemistry Carnival is the debut of an art exhibit by a new, student-run program called Science.Art.Wonder., or S.A.W. Just over 100 artists — most of them untrained college students — teamed with scientists from Emory and Georgia Tech to translate their research into art.

Ethan Mock and his art, "The Crucible"
Mock worked with the lab of Levi Morran, an assistant professor in Emory’s Department of Biology who studies co-evolutionary dynamics by experimenting with a host (a microscopic worm called C. elegans) and a parasite (a bright red species of bacteria called Serratia marcescens that is lethal to C. elegans upon consumption).

“This is so cool!” says Pareena Sharma, a first-year biochemistry major at Emory, as she snaps a photo of the sculpture. “It’s so relatable to me. I’ve been doing this same experiment since the first of the semester in Biology 142.”

Two young boys draw near the spikes. “Look up into the mirror,” Mock encourages them. “Now tell me what you see.”

“The same thing,” one of the boys replies.

“That’s right!” Mock says. “The process of evolution keeps repeating, going in a loop.”

Morran, arriving with his eight-year-old daughter, Maggie, is impressed. “You could see the light come on in those boys’ eyes,” he says. “They understood what Ethan is trying to convey. And it’s not an easy concept to grasp — the continual evolutionary struggle.”

Both artists and researchers engage with visitors as they peruse more than 140 works of art, set up on the Quad, in White Hall, the Math and Science Center and the Atwood Chemistry Center during the festival.

“This artwork gives you a snapshot of how much research is being done in Atlanta. I’m taken aback by how cutting edge and varied it is,” says Pamela Romero, president of S.A.W. The program is the brainchild of Romero, a senior majoring in neuroscience and behavioral biology and minoring in computer science.

Young visitors to the Emory campus peruse science-inspired art on the Quad. Photo by Ann Watson, Emory Photo/Video

The Emory S.A.W. contributions span labs across the University and beyond. The artists picked their mediums, from acrylic to watercolor and everything in between.

Emily Isaac, a first-year Emory student majoring in environmental sciences and theater, stands on the Quad next to a large watercolor she painted. “Art can help scientists make a point without using any scientific jargon,” she says.

She teamed with Robert Wallace from Georgia Tech’s Agricultural Technology Research Program. One of Wallace’s projects gave plots of farmland to women in India who had been victims of an acid attack. Isaac did a portrait of a woman with a scarred face. The woman’s head is partially wrapped in strips of bandages that Isaac painted to look like rows of newly sprouting plants. “I wanted to show hope, and how connecting with the environment can help people,” Isaac says.

This year’s 36 Emory S.A.W. artists are mainly undergraduates — many of them science majors — but they also include a few graduate students, faculty and staff members. Georgia Tech makes up the bulk of other contributing artists and researchers in this year’s S.A.W., although 10 independent artists also got involved, along with Georgia State University undergraduates and the Atlanta campus of SCAD.

“S.A.W. is collaborative, not only across disciplines and institutions, but also across students, faculty, staff and members of the Atlanta community,” Romero says. “We even have one international artist, from Puerto Rico.”

A painting by Georgia Tech student Bianca Guerrero portrays a virtual reality game used to measure players' perception of time as well as eye movement. The art is based on research by Georgia Tech psychologist Malia Crane. Photo by Ann Watson, Emory Photo/Video.

As long as she can remember, everyone thought Romero would become an artist, or maybe an architect. She began taking art classes at the age of three in her home town of Tegucigalpa, Honduras. She continued making and studying art, developing a surrealist style.

In ninth grade, however, a psychology course sparked a fascination for neurobiology. Romero took online classes and started reading up on subjects like optogenetics and deep-brain stimulation.

By the time she was accepted to Emory, she had decided to forge a career as a scientist. “A lot of people told me that if I chose neuroscience I would have to forsake art, because I would be a bad scientist if I tried to do both,” she recalls. “I was determined to prove them wrong.”

Romero sought out kindred spirits like Nicole Gerardo, associate professor of biology, who also grew up with twin passions for science and art. Gerardo once had students create artwork using microbes in her lab under the direction of Nancy Lowe — a former lab technician at Emory who went on to create a retreat center in North Carolina called AS.IF: Art and Science in the Field.

Gerardo later paired students with labs to create ceramic representations of research under the direction of Diane Kempler, who formerly taught visual arts at Emory.

“Art provides a way to reach people who may be intimidated by science,” Gerardo says. “And working with an artist lets scientists see their own work in a different way. That could lead to new scientific approaches.”

When Romero first joined forces with Gerardo it was simply to produce art for her lab, which focuses on evolutionary ecology. “We were test subjects for S.A.W.,” Romero says.

Emory senior Maureen Ascona, a neuroscience and behavioral biology major, discusses her art with visitors to the Quad. Ascona teamed with Helen Mayberg, from the Emory School of Medicine, who uses deep-brain stimulation to help patients with treatment-resistant depression. Photo by Ann Watson, Emory Photo/Video.

One of the pieces Romero created consists of triangular canvases that can be shifted into different positions. The acrylic painting depicts how aphids develop wings in the presence of predators, like ladybugs, or if food becomes scarce. “When Dr. Gerardo explains her work to people, she can move the canvases to show how the aphids change in response to their environment,” Romero says.

Romero wanted to give other students the chance to enter research labs and experiment with art.

“Pamela is an amazing woman, a force of nature,” says Gerardo, who is the faculty mentor for S.A.W. “What she has done with the support of her fellow students is incredible. I had envisioned maybe 20 pairings of scientists and artists. I’m still surprised by how big it became.”

Connections from across the University helped S.A.W. grow. Wei Wei Chen and John Wang, student leaders of Emory Arts Underground, provided the platform for Romero to launch S.A.W. and encouraged her to form a charter, bylaws and an executive team. That team includes Emory undergraduates Alex Nazzari (vice-president), Aila Jiang, Veronica Paltaraskaya, Anne Pizzini, Deborah Seong and John Wang, along with Georgia Tech students Olivia Cox, Siyan Li and Iris Liu.

The students’ efforts paid off with S.A.W.’s smash debut at the Atlanta Science Festival.

“One of my favorite parts was guiding artists through the process of disentangling the science, reassuring them that they could do it,” Romero says. “Many of them felt overwhelmed after first talking to a scientist. Some of them were first-year students who hadn’t even had introductory biology or chemistry.”

A piece by Alice Yang, a first-year Emory student majoring in neuroscience and behavioral biology who teamed with researchers of human genetics in the Emory 3q29 Project. Photo courtesy of S.A.W.

Exploring a lab through an art project allows students to develop a relationship with a researcher and often find a mentor, Romero says.

Alice Yang, a first-year Emory student majoring in neuroscience and behavioral biology, teamed with Jennifer Mulle, assistant professor at Rollins School of Public Health. Mulle is co-principal investigator of the Emory 3q29 Project, which seeks to understand a genetic deletion associated with an increased risk for schizophrenia.

“I’m so grateful for the experience,” Yang says of spending time with the 3q29 Project team. “I learned what it’s like to actually do science. And I caught their passion. People are just now realizing how genetics can be involved in mental illness. It’s a very new field.”

To create her art pieces, Yang ordered special scratch-off paper from her native China. “This paper’s easy to work with and it’s great for showing patterns and textures,” she says. She explains how she carefully cut slices from the black top layer of the paper to reveal the glowing, rainbow colors beneath. Her pictures portray the nanomapping of fluorescent-labeled alleles from the 3q29 lab while also paying tribute to Salvador Dali’s surrealism.

Even those who are not aspiring scientists can catch the science-art bug. Independent artist Aaron Artrip teamed with scientists Matthew Jackson and Dan Cook at Georgia Tech to demonstrate interaction with sound. A group of children buzzes around Artrip’s exhibit in White Hall. A piece of paper sprinkled with powdered black ink is taped to a wooden speaker, which is plugged into an electronic synthesizer. As Artrip taps a keyboard, the powder moves across the page, creating patterns.

“I’m making drawings with vibrations. Forcing sound through the ink causes it to move,” he explains.

“Would you like to try?” he asks a young girl watching him.

She doesn’t have to be asked twice.

A painting by Georgia Tech student Kate Bernart, "Connecting the Cycle," portrays Austin Ladshaw's research at Georgia Tech's School of Environmental Engineering on the nuclear fuel cycle and ways to prevent excessive accumulations of radioactive waste. Photo by Ann Watson, Emory Photo/Video

Ultimately, S.A.W. hopes to find ways to integrate its art-science model into grades K-12. “We would like to have artists and researchers go into K-12 classrooms to talk about the art and the research together,” Romero says.

She presented S.A.W. at the recent Georgia Tech STEAM Leadership Conference, which brought together educators and policymakers to explore new ways to teach science, technology, engineering, art and math, or STEAM. S.A.W. is now working to put together an anthology of its art into a booklet, to include descriptions of the science. The booklet will be aimed at high school students “to give them a glimpse of some of the possible fields available to them in college,” Romero says.

S.A.W. is also creating a web site where the art will be accessible in digital form, including videos of some of the interactive art pieces, along with other resources for K-12 teachers.

After graduating this spring, Romero plans to take a gap year, then go on to graduate school with the aim of becoming a professor with a research lab. “S.A.W. has an incredible executive team and I’m making sure that the program continues after I leave Emory,” she says. “I would also like to stay involved with it in some way.”

As she prepares for graduation, Romero is working on an art narrative piece funded by the Emory Center for Creativity and Arts. The work will combine acrylic painting and sculpture to represent the element Vanadium, discovered by Mexican mineralogist Andrews Manuel del Rio in 1801. A series of circular canvases will each represent an atom in Vanadium. Each canvas will also represent a country or group of countries in Latin America, on which Romero will depict the research of a scientist from that area.

“My main goal with this piece is to celebrate and encourage more Latin American science,” Romero says. She is calling the piece “Elementally Latino,” to describe how Latinos are an elemental, or basic, part of science and how they also embody an elemental force. “Latinos are such a passionate people that I can only adequately describe them as a force of nature,” she says.

Related:

The art and science of symbiosis
Frankenstein and robots rise up for Atlanta Science Festival