Emory graduate student J.T. Fu, first author of the Nature paper, holds vials of the catalyst and the reagent used in the reaction.
By Carol Clark
For decades, chemists have aspired to do carefully controlled chemistry on carbon-hydrogen bonds. The challenge is staggering. It requires the power of a miniature wrecking ball to break these extremely strong bonds, combined with the finesse of microscopic tweezers to single out specific C-H bonds among the many crowded onto a molecule.
The journal Nature published a method that combines both these factors to make an inert C-H bond reactive — effectively turning chemical “trash” to “treasure.”
“We can change a cheap and abundant hydrocarbon with limited usefulness into a valuable scaffold for developing new compounds — such as pharmaceuticals and other fine chemicals,” says J.T. Fu, a graduate student at Emory University and first author of the paper.
The Nature paper is the latest in a series from Emory University demonstrating the ability to use a dirhodium catalyst to selectively functionalize C-H bonds in a streamlined manner, while also maintaining virtually full control of the three-dimensional shape of the molecules produced.
“This latest catalyst is so selective that it goes cleanly for just one C-H bond — even though there are several C-H bonds very similar to it within the molecule,” says Huw Davies, Emory professor of organic chemistry and senior author of the paper. “That was a huge surprise, even to us.”
Click here to read more about the discovery.
Related:
Creating global bonds
C-H center nets $20 million
A huge shortcut for synthesis
No comments:
Post a Comment